Páginas

miércoles, 23 de enero de 2013

Puente de Hidrógeno


Enlace Puente de Hidrógeno
El enlace puente de hidrógeno es una atracción que existe entre un átomo de hidrógeno (carga positiva) con un átomo de O , N o X (halógeno) que posee un par de electrones libres (carga negativa).
Por ejemplo el agua, es una de las substancias que presenta este tipo de enlaces entre sus moléculas. Una molécula de agua se forma entre un átomo de Oxigeno con seis electrones de valencia (sólo comparte dos y le quedan dos pares de electrones libres) y dos hidrógenos con un electrón de valencia cada uno (ambos le ceden su único electrón al oxígeno para que complete el octeto).
La molecula de agua es una molécula polar, por lo que presenta cuatro cargas parciales, de esta manera la fracción positiva (un hidrógeno) genera una atracción con la fracción negativa de otra molécula (el par de electrones libres del oxígeno de otra molécula de agua). Teóricamente una molécula de agua tiene la capacidad de formar 4 puentes de Hidrógeno
El enlace puente de hidrógeno es 20 veces más débil o de menor contenido energético que un enlace normal. Pareciera ser de poca importancia, pero debido a la gran cantidad de moléculas y gran cantidad de enlaces de este tipo que puede contener una sustancia, el enlace puente de hidrógeno tiene una especial importancia.
Si se compara al H2O , con el H2S deberían de ser substancias muy parecidas ya que el oxígeno y el azufre pertenecen al mismo grupo (VIA), tienen propiedades parecidas, la diferencia es que el oxígeno es más electronegativo. El agua es una moléula polar y puede formar puentes de hidrógeno, mientras que el ácido sulfhídrico (H2S)es no polar y no tiene dicha capacidad.
Los puentes de hidrógeno que existe entre las moléculas de H2O , explican el incremento del pF, pEb, densidad, viscosidad, capacidad caloríca, etc (ya que las moléculas se encuentran unidas entre sí), a diferencia H2S , cuyas moléculas  no cuentan con la atracción puente de hidrógeno y por lo tanto a temperatura ambiente es un gas. 


Enlaces de hidrógeno bifurcados y sobre coordinados en el agua

Puede darse que un solo átomo de hidrógeno participe en dos enlaces de hidrógeno, en vez de en uno. Este tipo de enlace es denominado "bifurcado". Se ha sugerido que el enlace de hidrógeno bifurcado es un paso esencial en la reorientación del agua; .9

Los aceptores de enlaces de hidrógeno (que terminan en los pares libres del átomo de oxígeno) son más propensos a formar la bifurcación (en efecto, se le denomina oxígeno sobre coordinado) que los donantes.10

Enlaces de hidrógeno en ADN y proteínas

El enlace de hidrógeno también juega un rol importante en la determinación de las estructuras tridimensionales adoptadas por las proteínas y ácidos nucleicos. En estas macromoléculas, el enlace de hidrógeno entre partes de la misma molécula ocasiona que se doble en una forma específica, que ayuda a determinar el rol fisiológico o bioquímico de la molécula. Por ejemplo, la estructura de doble hélice del ADN se debe primordialmente a los enlaces de hidrógeno entre los pares de bases, que unen una cadena complementaria a la otra y permiten la replicación.

En las proteínas, los enlaces de hidrógeno se forman entre átomos de oxígeno esqueletales y átomos de hidrógeno amida. Cuando el espaciamiento de los residuos de aminoácido que participan en un enlace de hidrógeno es regular entre las posiciones i e i + 4, se forma una hélice alfa. Cuando el espaciamiento es menor, entre las posiciones i e i + 3, se forma una hélice 310. Cuando dos cadenas se unen por enlaces de hidrógeno que involucran residuos alternantes de cada cadena participante, se forma una lámina beta. Los enlaces de hidrógeno también toman parte en la formación de la estructura terciaria de las proteínas, a través de la interacción de los grupos R. (Ver también plegamiento de proteínas).

Enlace de hidrógeno simétrico

Un enlace de hidrógeno simétrico es un tipo especial de enlace de hidrógeno en el que el núcleo de hidrógeno está exactamente a mitad de camino entre dos átomos del mismo elemento. La fuerza del enlace a cada uno de estos átomos es igual. Constituye un ejemplo de un enlace de tres centros y dos electrones. Este tipo de enlace es mucho más fuerte que los enlaces de hidrógeno "normales". El orden efectivo de enlace es 0.5, así que su fuerza es comparable a un enlace covalente. Se ha visto en hielo a altas presiones, y también en la fase sólida de muchos ácidos anhidros, como el fluoruro de hidrógeno y el ácido fórmico a altas presiones. También se le ha visto en el anión bifluoruro [F-H-F]−.

Los enlaces de hidrógeno simétricos han sido observados recientemente espectroscópicamente en el ácido fórmico a presión alta (>GPa). Cada átomo de hidrógeno forma un enlace covalente parcial con dos átomos, en vez de con uno. Se ha postulado la existencia de enlaces de hidrógeno simétricos en el hielo a altas presiones (Hielo X). Se forman bajas barreras de enlace de hidrógeno cuando la distancia entre dos heteroátomos es muy pequeña.

Enlace de dihidrógeno

El enlace de hidrógeno puede ser comparado con el cercanamente relacionado enlace de dihidrógeno, que también es una interacción enlazante intermolecular que involucra a átomos de hidrógeno. Estas estructuras han sido conocidas por algún tiempo, y bien caracterizadas por cristalografía de rayos X; sin embargo, una comprensión de su relación con el enlace de hidrógeno convencional, enlace iónico y enlace covalente permanece oscura. Generalmente, el enlace de hidrógeno está caracterizado por un aceptor de protones, que es un par libre de electrones en átomos no metálicos (principalmente en el nitrógeno y oxígeno). En algunos casos, estos aceptores de protones pueden ser orbitales pi o algún complejo metálico. Sin embargo, en el enlace de dihidrógeno, un hidruro metálico sirve como aceptor de protones; formando una interacción hidrógeno-hidrógeno.

La difracción de neutrones ha mostrado que la geometría molecular de estos complejos es similar a los enlaces de hidrógeno, en el que la longitud de enlace se adapta muy bien a los sistemas complejo metálico/donante de hidrógeno.

Teoría avanzada del enlace de hidrógeno

Recientemente, la naturaleza del enlace fue elucidada. Un artículo ampliamente publicado11 probó, a partir de interpretaciones de anisotropía en el perfil de Compton del hielo ordinario, que el enlace de hidrógeno es parcialmente covalente. Parte de la información de resonancia magnética nuclear sobre los enlaces de hidrógeno en las proteínas también indica que hay enlace covalente.

Más generalmente, el enlace de hidrógeno puede ser visto como un campo escalar electrostático dependiente de la métrica, entre dos o más enlaces intermoleculares. Esto es ligeramente diferente de los estados ligados intramoleculares de, por ejemplo, el enlace covalente o el enlace iónico; sin embargo, el enlace de hidrógeno sigue siendo un fenómeno de estado ligado, puesto que la energía de interacción tiene una suma neta negativa. La teoría inicial del enlace de hidrógeno propuesta por Linus Pauling sugería que los enlaces de hidrógeno tenían una naturaleza parcialmente covalente. Esto permaneció como una conclusión controvertida hasta finales de la década de 1990, cuando mediante técnicas de RMN empleadas por F. Cordier et al. Para transferir información entre núcleos enlazados por hidrógeno, una característica que sólo sería posible si el enlace de hidrógeno contuviera algún carácter covalente.

Fenómenos debidos al enlace de hidrógeno

Punto de ebullición dramáticamente alto del NH3, H2O y HF, en comparación a los análogos más pesados PH3, H2S, y HCl

Viscosidad del ácido fosfórico anhidro y del glicerol.

Formación de dímeros en ácidos carboxílicos y de hexámeros en el fluoruro de hidrógeno, que ocurre incluso en la fase gaseosa, resultando en grandes desviaciones de la ley de los gases ideales.

La alta solubilidad en agua de muchos compuestos como el amoníaco es explicada por el enlace de hidrógeno con las moléculas de agua.

La azeotropía negativa de mezclas de HF y agua.

La delicuescencia del NaOH es causada, en parte, por la reacción de OH- con la humedad para formar especies H3O2- enlazadas por hidrógeno. Un proceso análogo sucede entre NaNH2 y NH3, y entre NaF y HF.

El hecho de que el hielo es menos denso que el agua líquida se debe a una estructura cristalina estabilizada por enlaces de hidrógeno.

La presencia de enlaces de hidrógeno puede causar una anomalía en la sucesión normal de los estados de agregación para ciertas mezclas de compuestos químicos, con el incremento o disminución de temperatura. Estos compuestos pueden ser líquidos hasta una cierta temperatura, luego son sólidos incluso con el incremento de temperatura, y finalmente líquidos cuando la temperatura se eleva sobre el "intervalo anómalo".12

La goma inteligente utiliza enlaces de hidrógeno como su única forma de enlace, así que puede "sanarse" cuando se pincha, debido a que pueden aparecer nuevos enlaces de hidrógeno entre las dos superficies del mismo polímero.







No hay comentarios:

Publicar un comentario